Notations

- \triangleright On rappelle que l'on note $\mathbb N$ l'ensemble des entiers positifs ou nul, $\mathbb Z$ l'anneau des entiers relatifs, $\mathbb Q$ le corps des nombres rationnels, $\mathbb R$ le corps des nombres réels et $\mathbb C$ le corps des nombres complexes.
- \triangleright On se place dans un espace euclidien $(E, \langle ..., ... \rangle)$ de dimension $n \in \mathbb{N}^*$. On note $\|...\|$ la norme euclidienne associée.
- \triangleright Pour tout vecteur x de E et tout réel positif r, on note B(x,r) (resp. $\overline{B}(x,r)$, resp. S(x,r)) la boule ouverte (resp. la boule fermée, resp. la sphère) de centre x et de rayon r:

$$B(x,r) = \{ y \in E \mid ||y - x|| < r \}, \ \overline{B}(x,r) = \{ y \in E \mid ||y - x|| \leqslant r \} \quad \text{et} \quad S(x,r) = \{ y \in E \mid ||y - x|| = r \}.$$

 \triangleright Pour toute partie A de E, on note \mathring{A} l'intérieur de A, c'est-à-dire le plus grand ouvert (au sens de l'inclusion) inclus dans A, \overline{A} l'adhérence de A, c'est-à-dire le plus petit fermé contenant A et $\operatorname{Fr}(A)$ la frontière de A:

$$\operatorname{Fr}(A) = \overline{A} \backslash \mathring{A}.$$

- \triangleright Si a est un élément de E, on note $\mathscr{V}(a)$ l'ensemble des voisinages de a.
- \triangleright Pour toute partie fermée et non vide F de E et tout $x \in E$, on admet sans démonstration que l'ensemble

$${||x - f||, f \in F}$$
.

admet une borne inférieure notée $\inf_{f\in F}\|x-f\|$ et on pose

$$d_F(x) = d(x, F) = \inf_{f \in F} ||x - f||.$$

- \triangleright On pose alors $\Gamma(x) = \{f \in F \mid ||x f|| = d(x, F)\}$. C'est donc l'ensemble (éventuellement vide) des points de F pour lesquels la borne inférieure est atteinte.
- \triangleright Lorsque $\Gamma(x)$ est un singleton, on note $\pi(x)$ son unique élément.
- \triangleright Si u et v sont deux vecteurs de E, on appelle segment [u,v] l'ensemble défini par :

$$[u, v] = \{x \in E \mid \exists t \in [0, 1], x = (1 - t)u + tv\}.$$

 \triangleright Soient A une partie de E et $u:A\to\mathbb{R}$. On suppose que $0\in\overline{A}$. On dit que $u(h)=\mathop{\rm o}_{h\to 0}(\|h\|)$ lorsqu'il existe une fonction δ définie sur un voisinage V de 0 telle que

$$\forall h \in V \cap A, \ u(h) = \delta(h) \|h\| \quad \text{et} \quad \delta(h) \xrightarrow[h \to 0]{} 0.$$

 \triangleright Soient Ω un ouvert de E et $f:\Omega\to\mathbb{R}$. On rappelle que l'on dit que f est différentiable en un élément a de Ω lorsqu'il existe une forme linéaire $\ell:E\to\mathbb{R}$ vérifiant :

$$f(a+h) = f(a) + \ell(h) + \mathop{}_{h \to 0} (||h||)$$
.

Lorsqu'elle existe, ℓ est unique et est notée df(a) et l'image $\ell(h)$ du vecteur h de E par ℓ est notée $df(a) \cdot h$. Le gradient de f en a est alors l'unique vecteur v de E vérifiant :

$$\forall h \in E, df(a) \cdot h = \langle v, h \rangle$$
.

On le note $\nabla f(a)$. Ainsi, sous réserve d'existence, on a :

$$f(a+h) = f(a) + \langle \nabla f(a), h \rangle + \underset{h \to 0}{\text{o}} (||h||).$$

 \triangleright Pour tout réel x, on note |x| sa partie entière.

Le problème a pour objectif d'étudier la différentiabilité de la fonction $d_F: x \mapsto d(x, F)$ en fonction de la partie F.

On fixe donc une partie F de E non vide et fermée.

Partie I — Résultats préliminaires

- 1. Montrer que, pour tout vecteur x de E, $d_F(x) = 0$ si et seulement si $x \in F$.
- **2.** a) Montrer que, pour tout $(x,y) \in E^2$ et tout $f \in F$, on a :

$$d_F(y) \leq ||y - x|| + ||x - f||.$$

- b) En déduire que d_F est 1-lipschitzienne.
- **3.** Soient x un vecteur de E et x_0 un vecteur de F. On pose $r = ||x x_0||$ et $K = \overline{B}(x, r) \cap F$.
 - a) Montrer que K est une partie compacte et non vide de E.
 - b) Montrer que $\Gamma(x)$ est non vide.
- 4. On suppose, dans cette question seulement, que F est en outre une partie convexe de E.
 - a) Montrer que, quels que soient les vecteurs u et v de E, on a : $\|u+v\|^2 + \|u-v\|^2 = 2(\|u\|^2 + \|v\|^2)$.
 - b) Soit x un vecteur de E et soient f et f' deux éléments de $\Gamma(x)$. On suppose que $f \neq f'$.

Montrer que :
$$\left\| \frac{1}{2} (f + f') - x \right\|^2 < d(x, F)^2$$
.

En déduire que, pour tout vecteur x de E, $\Gamma(x)$ est un singleton.

Ainsi, avec les notations de l'introduction, $\Gamma(x) = {\pi(x)}.$

c) On souhaite montrer que : $\forall x \in E, \forall f \in F, \langle f - \pi(x), x - \pi(x) \rangle \leq 0$. Pour cela, on fixe des éléments x de E et f de F. On introduit la fonction

$$\varphi \colon \begin{cases} [0,1] \longrightarrow \mathbb{R} \\ t \longmapsto \|(1-t)\pi(x) + tf - x\|^2 \end{cases}.$$

- i. Montrer que φ est une fonction polynomiale de degré inférieur ou égal à 2.
- ii. Justifier que φ admet un minimum en 0. Conclure.
- d) On fixe un vecteur x de E. Soit z un vecteur de F. On suppose que :

$$\forall f \in F, \langle f - z, x - z \rangle \leq 0.$$

Montrer que $z = \pi(x)$.

Partie II — Étude en dimension 1

On suppose, dans toute cette partie, que $E = \mathbb{R}$, et que \mathbb{R} est muni de sa structure euclidienne canonique.

5. Expliciter $d_{\{0\}}$, puis déterminer l'ensemble des points où $d_{\{0\}}$ est dérivable et déterminer sa dérivée.

Dans les questions 6 à 10, on suppose que $F = \mathbb{Z}$ et on étudie donc la fonction $d_{\mathbb{Z}}$.

- **6.** Montrer que \mathbb{Z} est fermé dans \mathbb{R} .
- 7. Justifier que $d_{\mathbb{Z}}$ est 1-périodique. Étudier la parité.
- 8. Pour tout x élément de [0,1[, expliciter, en justifiant, $d_{\mathbb{Z}}(x)$ en fonction de x. Tracer le graphe de $d_{\mathbb{Z}}$.
- **9.** Étudier la dérivabilité de $d_{\mathbb{Z}}$ en tout point de [0,1[.
- 10. Développement en série de Fourier de $d_{\mathbb{Z}}$.
 - a) Calculer les coefficients de Fourier de $d_{\mathbb{Z}}$.
 - b) La série de Fourier de $d_{\mathbb{Z}}$ converge-t-elle simplement/uniformément/normalement vers $d_{\mathbb{Z}}$?
 - c) En déduire la valeur de $\sum_{n=1}^{\infty} \frac{1}{(2n+1)^2}$ puis de $\sum_{n=1}^{\infty} \frac{1}{n^2}$, de $\sum_{n=1}^{\infty} \frac{1}{(2n+1)^4}$ et de $\sum_{n=1}^{\infty} \frac{1}{n^4}$. On commencera par justifier la convergence des séries.

Pour toute la suite de la partie, on fixe une partie fermée F de \mathbb{R} . On note Ω le complémentaire de F. C'est donc une partie ouverte de \mathbb{R} .

11. On définit, sur Ω , une relation binaire \sim de la manière suivante : étant donnés deux éléments x et y de Ω , on dit que x est en relation avec y lorsqu'il existe un intervalle ouvert]a,b[inclus dans Ω et contenant les éléments x et y:

$$\forall (x,y) \in \Omega^2, \quad x \sim y \iff \left(\exists (a,b) \in \mathbb{R}^2, \ a < b \ \text{ et } \ (x,y) \in]a,b[^2 \ \text{ et } \]a,b[\subset \Omega \right) \,.$$

- a) Montrer que \sim est une relation d'équivalence.
- b) Montrer que les classes d'équivalences sont des intervalles ouverts deux à deux disjoints.
- c) En déduire qu'il existe une famille $(a_i, b_i)_{i \in I}$ d'intervalles ouverts deux à deux disjoints, indexée par un ensemble I fini ou dénombrable, telle que

$$\Omega = \bigcup_{i \in I}]a_i, b_i[.$$

- 12. Soit x un élément de Ω . Il existe donc un unique i_0 élément de I tel que $x \in]a_{i_0}, b_{i_0}[$.
 - a) Exprimer $d_F(x)$ à l'aide de x, de a_{i_0} et b_{i_0} .
 - b) Étudier la dérivabilité de d_F en x.
- 13. On suppose dans cette question que $\mathring{F} \neq \emptyset$. Soit x un élément de \mathring{F} . Étudier la dérivabilité de d_F en x.

- 14. Étude à la frontière.
 - a) On suppose, dans cette question, que F = [0, 1]. Expliciter Fr(F). d_F est-elle dérivable en un point de Fr(F)?
 - b) Dans cette question, on pose : $F = \mathbb{R} \setminus \Omega$ où $\Omega = \bigcup_{n \geq 2} \left[\frac{1}{n} \frac{1}{n^3}, \frac{1}{n} \right]$, la réunion étant prise sur l'ensemble des entiers naturels n tels que $n \geq 2$.
 - i. Justifier rapidement que $\Omega \subset \left]0, \frac{1}{2}\right[$, que F est un fermé de $\mathbb R$ et que $0 \in \operatorname{Fr}(F)$.
 - ii. Soit $x \in \Omega$. Montrer qu'il existe un unique entier naturel n tel que $n \ge 2$ et $x \in \left] \frac{1}{n} \frac{1}{n^3}, \frac{1}{n} \right[$. Montrer que $n = \left| \frac{1}{x} \right|$.
 - iii. En déduire qu'il existe un réel C strictement positif tel que $\forall x \in \left]0, \frac{1}{2}\right[, d_F(x) \leqslant Cx^3.$
 - iv. Montrer que d_F est dérivable à droite en 0 et en calculer $(d_F)'_d(0)$.
 - v. d_F est-elle dérivable en 0?

Partie III — Étude de cas particuliers en dimension n

- **15.** On fixe un vecteur x_0 de E et on suppose, dans cette question seulement, que $F = \{x_0\}$.
 - a) Expliciter d_F . Soit x un élément de E. Expliciter $\Gamma(x)$.
 - **b)** Montrer que la fonction $g: \begin{cases} E \longrightarrow \mathbb{R} \\ x \longmapsto \|x x_0\|^2 \end{cases}$ est différentiable sur E et calculer son gradient.
 - c) En déduire que d_F est différentiable sur $E \setminus \{x_0\}$ et montrer que :

$$\forall a \in E \setminus \{x_0\}, \nabla d_F(a) = \frac{1}{\|a - x_0\|} (a - x_0).$$

- d) Étude de la différentiabilité de d_F en x_0 . Supposons que d_F soit différentiable en x_0 .
 - i. Montrer que, pour tout vecteur h de E, on a :

$$d_F(x_0 + th) = t \langle \nabla d_F(x_0), h \rangle + \underset{t \to 0}{\text{o}} (t).$$

- ii. Conclure.
- **16.** On suppose, dans cette question seulement, que F est un sous-espace vectoriel de E, distinct de E.
 - a) Montrer que pour tout vecteur x de E, $\Gamma(x)$ est un singleton, et que π (défini dans le préambule du sujet) est le projecteur orthogonal sur F.
 - b) Montrer que, pour tout élément a de E, d_F^2 est différentiable en a et calculer son gradient.
 - c) En déduire que, pour tout élément a de $E \setminus F$, d_F est différentiable en a et calculer son gradient.
 - d) On fixe un vecteur a de F. L'objet de cette question est l'étude de la différentiabilité de d_F en a.
 - i. On suppose que d_F est différentiable en a et on pose : $u = \nabla(d_F)(a)$. Soit $h \in F^{\perp}$. Montrer que : $\langle u, h \rangle = ||h||$.

Indication: on pourra procéder de manière analogue à la question 15.d.

ii. Conclure.

17. Dans cette question, on suppose que $E = \mathbb{R}^2$, dont les éléments sont notés en colonne, muni de sa structure euclidienne canonique et que : $F = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid y \leqslant 0 \text{ ou } y \geqslant x^2 \right\}$.

L'objet de cette question est d'étudier la différentiabilité de d_F en $0_{\mathbb{R}^2}$

- a) Dessiner l'allure de F.
- b) Montrer que F est un fermé de \mathbb{R}^2 .
- c) Montrer que $0_{\mathbb{R}^2} \in \operatorname{Fr}(F)$.
- d) Montrer que, pour tout vecteur u de \mathbb{R}^2 , $d_F(u) \leq ||u||^2$. Indication: on pourra séparer les cas où $u \in F$ et où $u \in \mathbb{R}^2 \backslash F$.
- e) En déduire que d_F est différentiable en $0_{\mathbb{R}^2}$ et donner son gradient en $0_{\mathbb{R}^2}$.

Partie IV — Distance à la sphère unité

On suppose, dans cette partie seulement, que : $F = \{x \in E \mid ||x|| = 1\}.$

F est donc la sphère de centre 0_E et de rayon 1.

- **18.** Soit a un élément de $E \setminus \{0_E\}$. On pose $u = \frac{1}{\|a\|}a$ et on fixe un vecteur y de F.
 - a) Montrer qu'il existe un plan vectoriel \mathcal{P} contenant a, u et y.
 - b) Montrer que $S = F \cap \mathcal{P}$ est le cercle unité de \mathcal{P} , pour la structure euclidienne sur \mathcal{P} induite par celle de E.
 - c) Montrer que $\Gamma(a) = \{u\}.$
- **19.** Montrer que, pour tout vecteur a de E: $d_F(a) = ||a|| 1|$.
- **20.** Montrer que, pour tout vecteur a de E tel que $a \neq 0_E$ et $a \notin F$, d_F est différentiable en a et calculer son gradient.
- **21.** Expliciter $\Gamma(0_E)$.
- **22.** Soit a un vecteur de F. Montrer que d_F n'est pas différentiable en a. Indication: On pourra calculer $d_F(a+ta)$, pour tout t élément de]-1,1[.
- **23.** On fixe un vecteur unitaire v.
 - a) Étudier la dérivabilité en 0 de φ : $\begin{cases}]-1,1[\longrightarrow \mathbb{R} \\ t\longmapsto d_F(tv) \end{cases}$.
 - b) Conclure quant à la différentiabilité de d_F en 0.

Partie V — Une condition nécessaire de différentiabilité à l'extérieur de F

Dans cette partie, on fixe un vecteur a de $E \setminus F$ et on suppose que d_F est différentiable en a. On souhaite montrer qu'alors :

$$\Gamma(a)$$
 est un singleton et que $\nabla d_F(a) = \frac{1}{d_F(a)}(a - \pi(a)).$

On pose $u = \nabla d_F(a)$.

- **24.** a) Montrer que, pour tout t > 0, $d_F(a + tu) d_F(a) \le t ||u||$.
 - **b)** En déduire que $||u|| \leq 1$.

Dans la suite de cette partie, on se donne un élément y de $\Gamma(a)$.

25. a) Montrer que pour tout $x \in [a, y]$,

$$||x - y|| = d_F(a) - ||a - x||.$$

b) En déduire que pour tout $x \in [a, y]$,

$$d_F(x) = ||x - y||.$$

26. On fixe $t \in [0, d_F(a)]$ et on pose $v = \frac{1}{d_F(a)}(a - y)$.

a) Montrer que

$$d_F(a - tv) = d_F(a) - t.$$

b) Montrer que

$$\langle u, v \rangle = 1 = ||u|| \, ||v|| \, .$$

c) En déduire que u = v et conclure.

Partie VI — Étude de la réciproque

Dans cette partie, on fixe $a \in E \backslash F$ et on suppose que $\Gamma(a)$ est un singleton. Ainsi, avec les notations du préambule,

$$\Gamma(a) = \{\pi(a)\}.$$

On souhaite montrer que d_F est différentiable en a et que $\nabla(d_F)(a) = \frac{1}{d_F(a)}(a - \pi(a))$.

27. Dans cette question, on se propose de montrer que :

$$\forall V \in \mathscr{V}(\pi(a)), \exists U \in \mathscr{V}(a), \forall x \in U, \Gamma(x) \subset V.$$

On va l'établir à l'aide d'un raisonnement par l'absurde. On suppose donc qu'il existe un voisinage ouvert $V \in \mathcal{V}(\pi(a))$ de $\pi(a)$ tel que :

$$\forall U \in \mathscr{V}(a), \exists x \in U, \Gamma(x) \not\subset V.$$

On dispose ainsi d'une suite $(x_p)_{p\in\mathbb{N}}$ convergeant vers a et d'une suite $(y_p)_{p\in\mathbb{N}}$ telles que :

$$\forall p \in \mathbb{N}, y_p \in \Gamma(x_p) \text{ et } y_p \notin V.$$

On pose :
$$M = \sup_{p \in \mathbb{N}} ||x_p - a||$$
.

a) Justifier succinctement que M est bien défini, puis montrer que $(y_p)_{p\in\mathbb{N}}$ est bornée.

On note ℓ une valeur d'adhérence de $(y_p)_{p\in\mathbb{N}}$.

- b) Justifier succinctement l'existence de ℓ .
- c) Montrer que $\ell \in F \cap (E \setminus V)$.
- d) Montrer que $\ell \in \Gamma(a)$, puis conclure.
- **28.** On pose : $R = ||a \pi(a)||$.
 - a) Justifier que R > 0 et expliciter $\overline{B}(a, R) \cap F$.
 - b) Soit x un élément de B(a,R). On fixe un élément y de $\Gamma(x)$.

On considère la fonction
$$\varphi \colon \begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ t \longmapsto \|(1-t)x + ty - a\|^2 - R^2 \end{cases}$$
.

- i. Montrer que φ est un trinôme du second degré. Que dire du signe des racines de ce trinôme?
- ii. Montrer que $[x,y] \cap S(a,R)$ est un singleton. On note p(x,y) le point d'intersection. Il existe donc un unique $t_{x,y} \in [0,1]$ vérifiant : $p(x,y) = (1-t_{x,y})x + t_{x,y}y$.
- iii. Que vaut $\varphi(t_{x,y})$? En déduire une expression de $t_{x,y}$.
- c) Montrer que:

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in B(a, R), \ \|x - a\| < \eta \implies \forall y \in \Gamma(x), \ \|p(x, y) - y\| < \varepsilon.$$

d) En déduire que :

$$\forall V \in \mathcal{V}(\pi(a)), \exists U \in \mathcal{V}(a), \forall x \in U, \forall y \in \Gamma(x), p(x,y) \in V.$$

- **29.** Pour tout x élément de B(a,R), on note y_x un élément de $\Gamma(x)$. Montrer que :
 - a) $\forall x \in B(a,R), \|x p(x,y_x)\|^2 \|a p(x,y_x)\|^2 = 2\langle x a, a p(x,y_x)\rangle + \|x a\|^2;$
 - **b)** $||x p(x, y_x)||^2 ||a p(x, y_x)||^2 = 2\langle x a, a \pi(a) \rangle + \underset{x \to a}{\text{o}} (||x a||).$
- **30.** Montrer que : $d_F^2(x) = d_F^2(a) + \langle x a, 2(a \pi(a)) \rangle + \underset{x \to a}{\text{o}} (\|x a\|)$.
- 31. En déduire que d_F est différentiable en a et calculer son gradient.
- **32.** Soit Ω un ouvert inclus dans $E \setminus F$. On suppose que, pour tout $x \in \Omega$, $\Gamma(x)$ est un singleton. Montrer que d_F est de classe \mathscr{C}^1 sur Ω .

Partie VII — Une condition nécessaire de différentiabilité en un point de F

Dans cette partie, on fixe un élément a de F et on suppose que d_F est différentiable en a. On souhaite montrer que : $\nabla(d_F)(a) = 0$.

On pose encore : $u = \nabla(d_F)(a)$.

- **33.** Montrer le résultat dans le cas où $a \in \mathring{F}$.
- **34.** On se place dans le cas où $a \in \operatorname{Fr}(F)$.
 - a) Montrer que : $d_F(a tu) = -t ||u||^2 + \underset{t \to 0}{\text{o}}(t)$.
 - b) Conclure.