Axe « fonctions » - Chapitre 12

Exercice 2

1. On donne l'expression de plusieurs fonctions. Certaines sont affines, d'autres non.

$$f_1(x) = -\frac{1}{4}x + 5 \qquad f_2(x) = \sqrt{2} + 3x \qquad \qquad f_3(x) = \frac{1}{2x - 1} \qquad \qquad f_4(x) = \frac{2x - 3}{3}$$

$$f_5(x) = -\frac{3}{4} \qquad \qquad f_6(x) = 2\sqrt{x} - 3 \qquad \qquad f_7(x) = 3x^2 - 1$$

Compléter le tableau suivant (en justifiant si nécessaire par un calcul que vous écrirez sur votre copie) :

					Si la fonction est affine :	
	Affine	Linéaire	Constante	Autre	Coefficient directeur a	Ordonnée à l'origine b
$ f_1 $						
f_2						
f_3						
f_4						
f_5						
f_6						
f_7						

2. La fonction g définie sur \mathbb{R} par $g(x) = (2x-3)^2 - 4x^2$ est-elle une fonction affine? Justifier soigneusement.